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High-Resolution Monoehromatization of Neutrons and X-rays by Multiple Bragg Reflection* 
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A simple scheme for obtaining highly monochromatic, reproducible beams of slow neutrons or X-rays 
at fixed wavelengths by means of crystal diffraction is described. The method is based on the well- 
known phenomenon of 'umweganregung', in which a 'forbidden' Bragg reflection is simulated under 
conditions of multiple reflection, i.e. when three or more reciprocal lattice points lie on an Ewald sphere. 
It is shown that there are orientations at which the Bragg angle (and wavelength) of a simulated reflec- 
tion has local maxima. With only coarse collimation in the neighborhood of these extrema, perfect 
crystals can give wavelength resolutions of A2/2 ~_ 10-5. Mosaic crystals would give less resolution but 
greater intensity. Since the various simulations of a 'forbidden' reflection may interfere with each other, 
it is necessary to carry out systematic computer calculations to check for interference after the extrema 
have been located. The scheme is applicable to a large set of crystals, including several diamond-structure 
and hexagonal close-packed elements and compounds such as quartz and calcite. Detailed numerical 
results show that germanium can reflect about 80 potentially useful wavelengths in the range 1-2 to 5 A 
(neutron energy 0.003 to 0.05 eV). A number of other interesting properties of such beams are pointed 
out. Potential uses in neutron research and several problems are discussed briefly. 

1. Introduction 

In recent years the flux of thermal neutrons in some 
advanced research reactors has approached 1015n.cm -2. 
sec -1 (Hendrie, 1965; Swartout, Boch, Cole, Cheverton, 
Adamson & Winters, 1965). Such increased source in- 
tensity makes it possible to consider substantial im- 
provements in energy resolution for many experiments 
using slow-neutron beams. The purpose of this paper 
is to describe a relatively simple method of obtaining 
highly monochromatic beams of slow neutrons at fixed 
energies in the range 0.003 to 0.05 eV (wavelength 
range 1.2 to 5 A). Although attention is directed main- 
ly toward neutrons, the basic scheme and much of the 
discussion apply equally well to X-rays. 

It has been known for several years that multiple 
Bragg reflection (sometimes 'simultaneous diffraction' 
or 'multiple diffraction') in crystal spectrometers can 
produce complicated disturbing effects on measure- 
ments of slow-neutron spectra (Hay, 1959; Spencer & 
Smith, 1960). These disturbances, which arise when a 
second set of lattice planes simultaneously satisfies the 
Bragg condition for the same wavelength, may take 
two rather distinct extreme forms. The occurrence of 
multiple reflection tends to reduce the intensity of a 
normally strong primary reflection; this effect accounts 
for dips often seen in measured spectra. On the other 
hand, multiple reflection may increase the intensity of 
a normally weak reflection. The latter effect is seen 
most dramatically when a 'forbidden' reflection is sim- 
ulated under conditions of multiple reflection. This 
is the celebrated case of 'umweganregung' (Renninger, 
1937), which is now a well understood phenomenon in 
the diffraction of X-rays, electrons, and neutrons. It is 
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possible to describe this effect qualitatively as follows. 
The reflected beam produced by the second set of 
Bragg planes is in turn reflected by a third set of planes, 
which automatically has the necessary orientation. 
Furthermore, this doubly reflected beam has exactly 
the same direction as a beam reflected directly from the 
primary set of Bragg planes. Of course, both the sec- 
ond and third sets of planes must have non-zero struc- 
ture factors. The third set of planes is uniquely deter- 
mined by the condition 

Kx = K2 q- K3, (1) 

where Kn is the reciprocal lattice vector corresponding 
to the nth set of planes. In this paper the second and 
third sets of planes, which cooperate to simulate a 
'forbidden' primary reflection, are called the secondary 
and tertiary planes. A detailed discussion of these 
points and many references to the extensive literature 
of multiple Bragg reflection may be found in the recent 
review article of Terminasov & Tuzov (1964). 

In the following sections it will be shown that under 
certain conditions, a 'forbidden' reflection simulated 
by multiple Bragg reflection may have a high degree of 
monochromaticity. Detailed results will be presented 
for germanium as an example. In addition, other in- 
teresting properties of the resulting beam, various pro- 
blems, and possible uses will be discussed. 

2. Algebraic conditions for multiple Bragg reflection 

The mathematical conditions for multiple Bragg re- 
flection have been presented in various forms in recent 
papers (Hay, 1959; Spencer & Smith, 1960; Cole, 
Chambers & Dunn, 1962). The equations which are 
most convenient for our present purposes are slightly 
different; thus a brief derivation and discussion are 
necessary. 
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Let us assume a conventional spectrometer in which 
both the incident and primary diffracted beams are 
horizontal. Thus the primary Bragg planes are vertical, 
and the orientation of the crystal may be completely 
specified by the Bragg angle 0 and the azimuthal angle 

between the vertical unit vector V and an arbitrary 
vector Z lying fixed in the primary Bragg plane, as in 
Fig. 1. Also shown are the reciprocal lattice vector K1 
corresponding to the primary Bragg planes, and the 
wave vector k of the incident beam (k = 1/2). 

The Laue-Bragg condition for reflection from the 
primary Bragg planes is 

k ' K 1  _1. 2 = - 2 K  1 . (2) 

Similarly, for simultaneous reflection from the second- 
ary Bragg planes corresponding to the reciprocal lattice 
vector K2, k .  K2 = -½Kz 2. (3) 

After substituting 

k=k(K1 x V  cos 0 - K I  sin O)/K1,  

and eliminating k, we get 

tan 0 = [ V .  (K2 × Ka)]/[K2" (K~- K2)]. (4) 

From the relation 

V = [Z cos ~ + (Z × Ka/K1) sin c~]/Z 

it readily follows that 

tan 0=  [Z.  (K2 × K1) cos ~ +/£1 (Z .  K2) sin ~]/ 

ZK2" K3, (5) 

where K3 is defined in equation (1). This result shows 
that tan 0 depends sinusoidally on the azimuthal angle 

(with a change of phase). It may then be written 
finally in the simple form 

tan 0 = tan 0v cos (c~-c~), (6) 

where tan 0v = R / I S I  (7a) 

cos o~2o = Z . R I S I / Z R S  (7b) 

sin 0qo = KI(Z- K z ) I S I / Z R S  (7c) 

R = Kz × K1 = Kz × K3 = K1 × K3 (7d) 

S - -K2"  K3. (7e) 

The two parameters 0:o and ~o have direct geometrical 
significance. Equation (7a) shows that 0~, the maximum 
value of the Bragg angle, is the acute angle between the 
secondary and tertiary Bragg planes, while equation 
(7b) shows that c~, the corresponding value of the azi- 
muthal angle, is the angle (with due regard for signs) 
between the reference vector Z and the zone axis R 
of the three reflections. 

In Fig. 2 are plotted three examples of equation (6), 
each curve corresponding to a different secondary re- 
flection vector K2. Curves similar to these have been 
discussed by several investigators (Hay, 1959; Spencer 

& Smith, 1960; Cole, chambers & Dunn, 1962). We 
shall refer to them as 'multiple-reflection curves'. 

The basis for the proposed scheme of monochroma- 
tization may be established directly from Fig. 2. 

Let us suppose that the case is one of 'umweganre- 
gung', in which a 'forbidden' primary reflection cor- 
responding to K1 may be simulated by the cooperative 
action of two reflections corresponding to K2 and K3. 
Then each multiple-reflection curve in Fig. 2 indicates 
the orientations (and, via Bragg's law, the wavelengths) 
for which simulation by a cooperating pair of planes 
may occur. Each curve has a simple shape with a 
single maximum value of 0 = 0p at a = cq0. This extre- 
mum is the basis for high-resolution monochromati- 
zation, since the Bragg angle 0 and the wavelength 2 
are stationary (to second order) for variations of the 
orientation angle e. Thus if the crystal has an orienta- 
tion corresponding to e~ and 0~o, only a very narrow 
range of wavelengths is transmitted, even when the 
collimators have finite angular divergence. 

Let us then designate an extremum corresponding 
to ~:0 and 0v as an 'operating point'. In Fig. 2, two 
operating points are enclosed in rectangular windows 
intended to represent arbitrary degrees of collimation. 
Inspection of Fig. 2 shows that another multiple-re- 
flection curve may pass so close to an operating point 
that it crosses the window and contributes an insepar- 
able reflection of ordinary resolution. This constitutes 
a type of 'interference' which renders an operating 
point useless for high-resolution monochromatization. 
Thus the neighborhood of each operating point must 
be checked for interference by the other curves. 

An additional complication now arises from the 
fact that the Bragg angle 0 has the nature of an angle 
of latitude on a sphere, and c~ has the nature of an angle 
of longitude. Thus true angular relationships are di- 
storted in a graph such as Fig. 2, particularly for large 
values of 0. In order to understand these points more 
fully, it is useful to proceed geometrically. 

It should be pointed out here that singular cases of 
equation (6) sometimes occur, i.e. when 0~o = 90 or 0 °. 
The former case, which is illustrated in Fig. 2, never 
gives a useful operating point but may cause interfer- 

Primary Bragg Plane [z v 
"~" .~. ~ . . ~ .  ~ -- " s  " ~  '~" 

Fig. 1. Spectrometer geometry. The incident and diffracted 
beams are horizontal, and the reference vector Z lies fixed 
in the vertical primary Bragg plane. V is a vertical unit vector. 
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ence. The latter case is never of experimental interest, 
but may have to be dealt with in a computer program. 
Finally it must be pointed out that occasionally two 
or more curves have the same values of cq0 and 0~ 
and thus coincide exactly. This situation, however, does 
not constitute interference in the present sense. 

3. Geometry of multiple Bragg reflection 

Consideration of the geometrical relationships of mul- 
tiple Bragg reflection leads to a better understanding of 
interference between multiple-reflection curves, of sin- 
gular cases, and of coincidence of curves. For greater 
clarity we adopt a different geometrical standpoint in 
this section. The crystal is considered to be fixed in 
space with both the primary and secondary Bragg 
planes vertical, while the direction of the incident beam 
is completely variable and no longer constrained to 
be horizontal. In Fig. 3, the origin O is located at an 
arbitrary point of the reciprocal lattice, and the points 
P1 and P2 are reciprocal lattice points corresponding to 
the horizontal reciprocal lattice vectors K~ and K2, 
respectively. Consider the planes which perpendicular- 
ly bisect the vectors K1 and K2; these are represented in 
Fig. 3 by the triangles CQS and CRS, respectively. The 
Laue-Bragg condition for the primary plane, equation 
(2), is satisfied by any wave vector k joining the plane 
CQS to the origin. Similarly, equation (3) is satisfied 
by any wave vector joining the plane CRS to the origin. 
Provided that K1 and K2 are not parallel, both equa- 
tions are satisfied on the intersection of the planes, re- 
presented by the vertical line S(L Thus any direction 
of incidence lying in the plane OCS gives multiple 
Bragg reflection for an appropriate wavelength. 

. . . .  

Let SO represent an arbitrary incident wave vector 
k for which multiple reflection occurs. S is equidistant 
from the three reciprocal lattice points - O, P1 and P2 - 
and it is the center of an Ewald sphere. The shortest 
possible vector k is the one lying in the plane OPIP2; 
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Fig. 2. Schematic plot of  three multiple-reflection curves, Bragg 
angle 0 vs. azimuthal  angle 0c. Two extrema or operat ing 
points  are enclosed in rectangular  windows. The operat ing 
point  at (~2, 02) is subject to interference by one of  the curves. 

it is represented by tS-O. The point C is the center of a 
circle which passes through the points - O, P1 and P2. 
Also indicated in Fig. 3 are various important angles. 
The general Bragg angle 0 corresponding to k =  SO is 
shown, as well as the maximum Bragg angle 0p which 
occurs when k=-CO. The angle c~ is the azimuthal 
angle measured with respect to the value ct~ which cor- 
responds to the maximum 0~, i.e. 

6 - ~ - ~ .  (8) 
The angle fl specifies the direction of the incident beam 
within the plane OCS of possible directions. 

The singular case in which 0~0 = 90 ° arises when the 
center C of the circle coincides with the bisecting point 
Q. There is still a plane of possible incident directions 
for multiple reflection; it corresponds to 

= c~- c~p = + 90 ° (9) 

for all values of 0, as shown in Fig. 2. The singular 
case in which 0~ = 0  corresponds to a circle of infinite 
radius and does not arise for finite, nonparallel vectors 
KI and K2. 

Consideration of Fig. 3 shows that, if a fourth point 
P3 of the reciprocal lattice lies on the circle OP1P2, 
then the multiple-reflection curve given by equation 
(6) for the secondary Bragg planes corresponding to 
P3 coincides with the curve for P2. This follows from 

. . . .  

the fact that the line SC, the circle OP1P2, and the re- 
lated angles are identical for the two cases. It is not 
surprising that coincident curves occur frequently du- 
ring the simulation of reflection from a highly symme- 
trical primary plane, such as Ge {200}. 

In order to study further the question of interference 
between multiple-reflection curves, it is useful to look 
at the geometry of Fig. 3 from a different point of 
view. Fig. 4 shows a coordinate sphere (not an Ewald 
sphere) centered on the origin O and viewed in a direc- 
tion almost parallel to k. Since only angles and direc- 
tions have significance, the radius is arbitrarily chosen 
to be OPa for clarity and convenience. As before OP1 
is equal to K1, while-S'O and C'O are segments of the 
infinite lines defined by 0 S  and 0C.  In addition the radii 
OB, -OA, and OD are parallel to QC,-Q-S, and CS, res- 
pectively. P1 is the pole, and the great circle BAD is the 
equator, of a set of spherical coordinates based on 0 
and ~ (or 0 and ~). The great circle C'S'D is the inter- 
section of the sphere with the plane OCS and thus de- 
fines the locus of incident directions for which multiple 
reflection by K~ and K2 o c c u r s .  The operating point, 
which is given by 0 = 0~o and ~ = 0, is represented by the 
point C'. As before, fl is the angle between the incident 
direction corresponding to the operating point C' and 
an arbitrary incident direction in the plane OC'S' of 
possible directions. Thus Fig. 4 shows that the natural 
variable to use for studying the neighborhood of C' for 
interference by other curves is t ,  instead of ct. For a con- 
ventional spectrometer in which the reflecting Bragg 



120 H I G H - R E S O L U T I O N  M O N O C H R O M A T I Z A T I O N  OF N E U T R O N S  AND X-RAYS 

planes are vertical, fl is the vertical deviation angle, lim- 
ited by vertical collimation. One may now imagine an 
angular window of width 2AO and height 2A,8 (deter- 
mined by collimation considerations) centered on the 
operating point C'. If any of the other multiple-reflec- 
tion curves cross the window, then the operating point 
is useless for high-resolution monochromatization be- 
cause of interference. A diamond-shaped window of 
this type is sketched in Fig. 4. 

Reconsideration of Fig. 3 shows that every case of 
multiple Bragg reflection involving the primary reci- 
procal lattice point P1 and any other reciprocal lattice 
point, such as P4, leads to a 'fan' of possible incident 
directions lying in a plane passing through the origin, 
similar to plane OCS. The intersection of such a plane 
with the coordinate sphere in Fig. 4 is always a great 
circle. Segments X Y  and WZ of two such great circles 
are shown there; the former does not interfere with 
C', while the latter does. It is now clear that the distor- 
tion of angular relationships encountered in Fig. 2 may 
be avoided by a simple spherical map, in which the 
multiple-reflection curves are great circles. 

Another observation that may be made from Fig. 4 
is that the angles fl and 0p may be considered as the 
latitude and azimuth, respectively, in a spherical co- 
ordinate system based on the point D as pole and great 
circle P1C'B as equator. Note that this coordinate sy- 
stem depends on both K~ and K2, while the (ct, 0)-co- 
ordinate system depends on K~ and Z only. Further- 
more it should be pointed out that the reflected beam 
produced by simulated reflection (having wave vector 
k+K1) also is restricted to a fan of directions lying in a 
plane. 

Finally it is necessary to derive some equations in- 
volving ft. From Fig. 3 and equation (8) it immediately 
follows that 

tan fl = tan & cos 0p = tan (ct - 0q0) cos 0~. (10) 

Similarly from Fig. 3 comes a set of three equivalent re- 
lationships, 

k2~=k c o s t  ( l la)  

2=2~ cos fl (I Ib) 

sin 0=sin 0~ c o s t ,  ( l lc)  

where k~ and 2~ are the values of k and 2 at the opera- 
ting point. 

4. Conditions for high-resolution monochromatization 

It is now possible to summarize the conditions under 
which useful high-resolution monochromatization may 
occur. First, it is necessary to have a 'forbidden' re- 
flection which can be simulated by 'umweganregung' 
in multiple Bragg reflection. For each such simulation 
there is an 'operating point', i.e. an orientation for 
which the reflected wavelength is a second-order ex- 
tremum. Thus even with relatively crude collimation, 
only a very small range of wavelengths is reflected, pro- 
vided that the operating point is not too close to an- 

other multiple reflection. This means that after an 
operating point has been located by calculation, it is 
necessary to determine whether the other multiple- 
reflection curves interfere with it. The size of the win- 
dow which must be checked depends on the degree of 
collimation contemplated. 

It should be pointed out here that 'monochromatic' 
beams produced by the multiple-reflection method may 
contain wavelengths corresponding to higher or lower 
orders of the nominal wavelength. Of course, a useful 
monochromator crystal must satisfy the usual require- 
ments of small absorption, incoherent scattering, and 
inelastic scattering. 

5. ~Forbidden' reflections 

As Renninger (1937) pointed out in his original paper 
on 'umweganregung', different types of 'forbidden' 
Bragg reflections must be considered separately, de- 
pending on whether they are forbidden by: (1) the 
space lattice, (2) the space group, or (3) special atomic 
positions (International Tables for X-ray Crystallo- 
graphy, 1952). Each of these types will be discussed in 
turn, both in general terms and by means of examples 
for the diamond structure. 

The first type of forbidden reflection occurs only for 
nonprimitive space lattices, each of which has its cha- 

0 I P3 

P2 

P4 

Fig. 3. Geometry of multiple Bragg reflection. K1, K2, and K3 
are horizontal reciprocal-lattice vectors corresponding to 
the primary, secondary, and tertiary reflections, respectively. 
The center S of any Ewald sphere lies on the intersection 
SC of the planes CQS and CRS. The incident wave vector k 
is restricted to an 'fan' of directions lying in the vertical 
plane OCS. 
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racteristic set of absences or extinctions. For example, 
the face-centered cubic lattice of diamond rigorously 
forbids reflections having indices of mixed parity, such 
as 100 and 211. However, it is easily shown that for- 
bidden reflections of this type cannot even be simulated 
by multiple Bragg reflection (Terminasov & Tuzov, 
1964). Consequently, they may be completely ignored 
for our present purposes. 

The second type of forbidden reflection occurs only 
for space groups containing a screw axis or glide plane; 
each such group has a characteristic set of absences. 
For example, the space group (Fd3m) of diamond for- 
bids reflections hkO, where h and k are even and h + k = 
4n+2. Many (probably all) of these reflections, such 
as 200 and 420, which are rigorously forbidden by cry- 
stal symmetry, can be simulated by multiple reflection. 
Thus forbidden reflections of this type must be con- 
sidered to be preeminent candidates for use in high- 
resolution monochromatization. 

The third type of 'forbidden' reflection occurs for 
certain crystal structures with spherically symmetric 
scattering centers located at certain special positions in 
the unit cell. For example, the structure of diamond is 
such that spherically symmetric carbon atoms would 
give vanishing structure factors for reflections hkl, 
where h, k, and l are each even and nonzero, and 
h + k + 1-- 4n + 2. In general, however, crystal atoms are 
not expected to be spherically symmetric, and there- 
fore such reflections are not strictly forbidden. In fact, 
weak but measurable 222 reflections of X-rays have 
been observed for diamond, germanium and silicon 
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Fig.4. Spherical mapping of multiple-reflection curves. The 
center of  this coordinate sphere (not an Ewald sphere) is 
at the origin of the reciprocal lattice, and the viewing 
direction is almost parallel to the vector k of Fig. 3. The 
great circle C ' S ' D  is a multiple-reflection curve, for which 
the operating point is C'. X Y  and W Z  are segments of non- 
interfering and interfering curves, respectively. 

(Renninger, 1960). Unfortunately even a weak 'for- 
bidden' reflection could produce enough inseparable 
contamination to ruin the highly monochromatic com- 
ponent. Nevertheless, some of the 'forbidden' reflec- 
tions of this type may still be useful for high-resolution 
monochromatization of neutrons, particularly in the 
case of cubic crystals, since at moderate temperatures in 
these crystals the nuclear 'cloud' which scatters neu- 
trons does tend to be spherical. This suggests that it is 
worthwhile to investigate some of these reflections ex- 
perimentally on an individual basis. 

The foregoing discussion shows that many crystals 
are potentially suitable as high-resolution monochro- 
mators, since a substantial fraction of all crystals have 
glide planes or screw axes. These include many well- 
known compounds, such as calcite and c~-quartz. How- 
ever, there are two simple crystal structures which stand 
out from the rest because of the availability of large, 
high-quality crystals having desirable scattering and 
absorption properties. They are the diamond structure, 
exemplified by silicon and germanium, and the hexa- 
gonal close-packed structure, exemplified by beryllium, 
magnesium and zinc. All of these are probably useful 
for neutrons; many additional elements having the 
h.c.p, structure may also be suitable for X-rays (Lafour- 
cade, Couderc & Larroque, 1965). 

Like the diamond structure, the h.c.p, structure 
(space group P63/mmc) has 'forbidden' reflections of 
the second and third types. Reflections hh2hl having l 
odd are strictly forbidden (00Cl, 0003, 1121, etc.), 
while reflections hkil having l odd and h -  k = 3n ~ 0 are 
only approximately 'forbidden' (3031, 3033, 4151, etc.). 
Fortunately, several low-index reflections are of the 
former type, since the latter are less likely to be useful 
in hexagonal crystals, in which the nuclear 'clouds' 
have ellipsoidal shapes even at low temperatures. 

6. Calculation for germanium 

Because of the availability of large, almost perfect cry- 
stals of germanium and silicon and because of the sim- 
plicity of cubic symmetry, a computer program based 
on the equations and figures of §§2 and 3 has been 
written for the case of the diamond structure. The pro- 
gram, called DBSK3, is written in FORTRAN IV for 
the UNIVAC 1107 computer. 

A brief description of the program scheme follows. 
For a given primary forbidden reflection K1 to be sim- 
ulated and for a given reference vector Z lying in the 
primary Bragg planes, the program first finds all of the 
operating points inside any rectangle in the (ct, 0) plane 
of Fig. 2, where the rectangle is defined by the lines: 
0 = 0min, 0 = 0max, ¢~ = t~min, and ~ = t~max. 

This is done by systematically computing equation s 
(7) for all reciprocal lattice points inside a rectangular 
parallelepiped large enough to enclose all possible se- 
condary reflections. After the operating points are 
ordered roughly in order of decreasing Bragg angle, 
each one is tested for interference by all other multiple- 
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reflection curves, including those which have their 
operating points outside the (e, 0) rectangle. To do this, 
a systematic test is made of all reciprocal lattice points 
inside a cube enclosing the Ewald sphere for the operat- 
ing point. For reasons of computational simplicity, 
the (fl, 0) region which is tested is not rectangular as 
indicated in Fig. 2, but is diamond-shaped as shown in 
Figs. 4 and 5. If interference is found to occur, that 
is, if a multiple-reflection curve crosses the diamond- 
shaped area as in Fig. 5, both fl~ and (0~-0~) are cal- 
culated. Often two or more curves produce interfer- 
ence. In any case, the four intersections (or corners of 
the diamond) which are nearest to the operating point 
define an asymmetric quadrilateral, shaded in Fig. 5, 
which may be characterized by the quantities 0-, 0+, 
fl-, and fl+. Thus the values of fl~ and (0~- 0~) for each 
interfering curve provide a detailed picture of inter- 
ference, while the four quantities 0-, 0+, fl-, and fl+ 
provide a summary by defining a region without inter- 
ference. The program recognizes a coincident curve as 
a special case and does not treat it as an interfering 
curve. 

A number of techniques have been used to decrease 
execution time for the program. For example, con- 
sideration of the structure factors of diamond-struc- 
ture reflections shows that effective simulation can 
occur only for multiple reflections having all Miller 
indices odd; thus all systematic testing of reciprocal 
lattice points may be confined to these. Furthermore, 
for these odd indices the denominator in equation (7a) 
never vanishes; thus it is not necessary to provide for 
singular cases in which 0~, = 90 °. Fast preliminary tests 
are used to by-pass time-consuming detailed ones in the 
interference calculations, and integer arithmetic is fre- 
quently used. Finally, in operating the program it is 
often possible to save time by using symmetry consi- 
derations to reduce the range of the azimuthal angle ~. 

Calculations have been performed for the seven 
'forbidden' reflections of germanium having the largest 
plane spacings: 200, 420, 244, 640, 222, 600, 622. In 
these calculations, the lattice constant of Ge was taken 
as 5.6576 A, and the values of relevant physical con- 
stants as follows: Planck's constant= 6.6256 x 10 -27 
erg sec, mass of neutron = 1.67482 x 10 -24 g, and charge 
of electron= 1.6021 x 10 -t9 coulomb. Various param- 
eters for the calculations are summarized in Table 1. 
In addition, the diamond-shaped region for testing 
interference has AO = 0.5 ° and Aft= 3 ° for all cases. The 
following arbitrary criteria were adopted in deciding 
whether an operating point is acceptable as a useful 
one: 0_ and 8+ _> 0.25 o, and fl_ and ,8+ _> 1 o. As shown 
in the last column of Table 1, six of the seven forbidden 
reflections have more than 10 useful operating points. 
Detailed data on these operating points are given in 
Table 2. This table is self-explanatory, except that in 
columns 7 and 8 X indicates that 0_ or 0+ > 0.5 °, and 
in columns 9 and 10 Y indicates that fl- or fl+ > 3 o. 

It is obvious that these results may be easily applied 
to diamond or silicon; the angles 0v and c~:o of the 

operating points are unchanged, while the wavelength 
2~ and energy E~ are changed simply by constant fac- 
tors which depend on the ratio of lattice constants. 
In summary, for germanium alone there are about 80 
fixed wavelengths in the range 1.2 to 5/~ at which high- 
resolution monochromatization is possible, and both 
the number and range of values can be increased by 
using other crystals. 

It is interesting to note that cases of coincident mul- 
tiple-reflection curves occur frequently, especially for 
the 200 and 600 reflections. Thus any scheme developed 
to compute intensities and resolutions of simulated re- 
flections ought to be broad enough to include them. 
Another significant point is that the range of Bragg 
angles is large, 15 to 85 °, so that a spectrometer of 
special design might be needed to exploit the method 
fully. 

7. Properties of the multiple-reflected beams 

Now that the existence of a number of potentially use- 
ful operating points has been demonstrated, it is de- 
sirable to examine the properties of multiple-reflected 
beams in somewhat greater detail. The properties to be 
considered are monochromaticity, reproducibility, an- 
gular divergence, time-of-flight characteristics, inten- 
sity, and cross-sectional area. 

The degree of monochromaticity depends on three 
independent factors: the intrinsic peak width of a per- 
fect crystal, the mosaic width of an imperfect crystal, 
and the degree of collimation for the angle ft. The anal- 
ysis in §§ 2 and 3, which is based on the simple kinemat- 
ic (or geometric) theory of diffraction, is adequate for 
determining a first approximation to the orientations 
and wavelengths for multiple Bragg reflection, but it 
erroneously gives an intrinsic peak width of zero. The 
more exact dynamical theory of diffraction, which has 
been reviewed recently by James (1963), is required to 
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Fig. 5. Schematic details of interference calculations, Bragg 
angle 0 v s .  divergence angle ft. Two interfering curves reduce 
the interference-free region from the diamond-shaped 
window to the shaded asymmetric quadrilateral which 
encloses the operating point. 
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Table 1. Summary of parameters for calculations of simulated germanium reflections 

Column 7 gives the number  of operating points (including coincident ones) found in the specified (6, 0)-rectangle. Column 8 
gives the number  of operating points (excluding coincidences) found to be free of interference. 

Simulated Reference 0min 0max ~min ~max Points Points 
reflection vector Z (°) (o) (o) (o) tested accepted 

200 [001] 12 90 0 45 43 11 
420 [001] 30 90 0 90 45 15 
244 [01i] 41 90 0 90 49 13 
640 [001] 45 90 0 90 58 2 
222 [01i] 17 90 0 30 56 13 
600 [001] 36 90 0 45 42 11 
622 [01i] 45 90 0 90 51 15 

Table 2. Operating points free of interference for 7 simulated germanium reflections 
In column 7 or 8, X indicates that 0- or 0+>0.5 °, and in column 9 or 10, Y indicates that B- or B+>3 °. 

Primary 
(simulated) Secondary 
reflection reflection 

200 l l i  
13i 
31I, i l i  
133 
33i, i 3 i  
15i 
333, i33 
153 
37i, i 7 I  
353, i53 
533, 333 

420 13i 
33I 
i 3 I  
i l I  
35i 
i13 
i 5 i  
133 
333 
353 
i53 
35I 
37i 
533 
i37 

244 l I1  
I31 
i33 
313 
311 
315 
315 
335 
333 
711 
5 i i  
131 
5i7 

640 313 
i13 

222 311 
311 
3 i I  
l i I  
511 

Op ~p 2 E O- O+ fl+ B+ 
(o) (o) (A) (eV) (o) (o) (o) (o) 

70"52878 45-00000 5-33404 0.002875 X X Y Y 
35"09680 18"43495 3"25289 0"007731 X X Y Y 
29-49621 45"00000 2"78561 0"010542 X X Y Y 
26.52535 45.00000 2"52665 0"012814 X X Y Y 
25.94312 18"43495 2"47508 0"013353 X X Y Y 
22"19161 11"30993 2"13690 0"017914 X 0.36 1"4 Y 
22.00171 45.00000 2-11953 0"018209 X X Y Y 
19"46295 30"96375 1"88510 0"023019 X X 2"7 Y 
14-94030 8-13010 1-45860 0-038449 0.47 0-40 Y 1-8 
14"94030 45"00000 1"45860 0"038449 X X Y Y 
14-42007 45"00000 1.40891 0.041210 0"49 X Y Y 

84.78409 24"09484 2"51968 0"012885 X X 2"3 Y 
82.38862 36"69922 2.50786 0.013006 X X 1.7 Y 
58"51784 17"71547 2"15772 0"017570 X X Y Y 
56.25101 36.69~22 2.10377 0.018483 X X Y 2.8 
48"50602 17"71547 1"89515 0"022776 X X 1"0 1"3 
48.50602 65.90516 1.89515 0.022776 X X 1.3 1"3 
46"91128 11"49046 1"84776 0"023959 X X 2-5 2.1 
44.41531 65-90516 1"77074 0"026089 X X Y 1.8 
42.80175 74"97974 1.71915 0"027678 X X 1.3 2"8 
42.71838 43.78057 1"71645 0.027765 0"49 X 1.4 1.7 
41"62296 31-37637 1"68059 0"028963 X 0"42 2"8 Y 
35"48970 9"75967 1"46890 0"037912 0"40 X 1"7 1.4 
34.22750 11"49046 1"42316 0"040388 0"41 0.25 1-5 1"1 
34.22750 84.88891 1"42316 0"040388 0"43 0.34 1"4 1"2 
31"03234 65"90516 1-30435 0"048081 0"33 X 1"1 1.1 

84"39959 56.30993 1"87686 0"023222 X X 1"1 Y 
78.02327 36.86990 1.84482 0"024036 X X 2"4 Y 
78.02327 0.00000 1.84482 0.024036 X X 1.3 1.3 
77"24659 50.19443 1.83934 0"024179 X 0"46 Y 1"9 
75.23687 26.56505 1"82361 0"024598 X X 1-1 2.9 
75"23687 63"43495 1"82361 0"024598 X X 2"0 2.9 
64.98282 66"03751 1.70894 0"028010 X X 1"2 1-1 
63"88173 56"30993 1'69330 0"028530 X X Y 1-2 
55.53404 56.30993 1.55483 0"033838 0"49 0"36 Y 1"5 
51"73730 0"00000 1"48074 0"037308 X X 2"8 2"8 
51.21706 0.00000 1.47008 0"037851 X X 2"3 2"3 
48.14034 63"43495 1"40456 0"041465 X X 2"5 2"2 
43.78265 59"74356 1"30488 0.048042 X X 1.6 1"4 

82.38862 74.49864 1"55531 0.033816 X X 2.1 2"1 
61.38895 65.19125 1"37753 0"043108 X X 1.1 1.6 

79.97501 0"00000 3"21654 0.007906 X X Y Y 
62"96431 30"00000 2"90947 0"009663 X X Y Y 
51.49792 0"00000 2-55625 0.012519 X X Y Y 
48"52706 0.00000 2"44742 0"013657 X X Y Y 
41.36036 19"10660 2"15842 0"017559 X X Y 1"4 
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Table 2 (cont.) 
Primary 

(simulated) Secondary 0~ ~ 2 E 0- 0+ ,8- fl+ 
reflection reflection (o) (°) (A) (eV) (°) (°) (°) (°) 

511 41.03257 0.00000 2.14436 0.017790 X X Y Y 
5i i  38.94244 0.00000 2.05307 0.019407 X X Y Y 
33I 35.47734 19.10660 1.89577 0.022761 X X 1.8 1.8 
5~1 34.04773 30.00000 1.82881 0.024458 X X 2.8 2.8 
53i 31.71867 13.89788 1.71732 0.027737 X X 2.5 1.1 
711, 33~ 27.21492 0.00000 1.49383 0.036657 X X 2.6 2.6 
731 23"07392 30.00000 1"28017 0"0~9915 X 0"46 1"9 1"9 
713 22'02350 19"10660 1'22486 0'054524 0"48 0'27 1"8 2"4 

600 33I 86"98304 18"43495 1"88325 0"023065 X X 1-0 1-5 
53I, 13i 7 5 " 2 3 6 8 7  18"43495 1.82361 0.024598 X X 2.9 2"9 

{ lI1,511 } 33~ 70"52878 45"00000 1"77801 0"025876 X X Y Y 
533,13~ 6 2 " 9 4 7 1 3  45"00000 1"67953 0'028999 X X 2.0 2"0 
55I, 15I 5 5 . 5 3 4 0 4  11.30993 1'55483 0"033838 X X Y 1-5 
353 54"45125 30"96375 1"53438 0"034745 X X 1.8 Y 
73i, i3 i  48.14034 18.43495 1.40456 0.041465 X X 2"2 2"2 
37I 45"97953 8"13010 1.35611 0"044481 X X 2"9 2-3 

4, .ooooo 1. 9 69 0.04   6 

373 43'00087 23"19859 1"28618 0"049449 X 0"39 1"4 1-8 
57~, 173 40.76669 23.19859 1.23143 0.053944 X 0"43 1.6 1-3 

622 5iI 87.46950 0.00000 1.70417 0.028167 X X 2.2 2"2 
l I I  84"94884 0"00000 1"69921 0"028332 X X 1"5 1"5 
33I 80.91528 90.00000 1.68443 0.028831 X X 2.5 2.5 
331 78"82001 47"86958 1.67346 0"029210 X X Y 1"1 
531 72.97613 39.66403 1.63109 0"030747 X X 2.5 Y 
33I 71.64702 20"22954 1"61906 0-031206 X 0"37 1"0 1"2 
53I 68.19625 16"77865 1.58380 0.032611 X X 1-0 2.4 
711 66-15736 0-00000 1-56025 0-033603 x x 1-4 1-4 
331 61.03992 47"86958 1"49253 0.036721 X X Y 1-1 
335 60.76636 90.00000 1.48857 0"036917 X X 2-2 2"2 
713 59.31654 58"90907 1.46701 0.038010 X X 1.2 1-3 
3~3 58.25416 0"00000 1"45062 0"038874 X X Y Y 
533 57.73392 0.00000 1"44241 0"039317 X X 2"5 2.5 
3~i 53"21158 28"93254 1.36612 0"043831 0"25 X 1.2 1"4 
133 49.90221 73"22134 1"30487 0"048043 X X 1.0 1"6 

describe diffraction in crystals of  finite size. One of the 
results of  this fundamenta l  theory is that the wave- 
lengths and orientations which can give multiple dif- 
fraction are modified slightly, just  as in the case of or- 
dinary single diffraction (James, 1963; Bacon, 1962). 
In terms of Fig. 3 the locus of  multiple Bragg reflection 

_ _ _  

represented by the line CS is shifted and broadened by 
amounts  of  the order o f /1k /k  "~- 10 -5. Thus for a per- 
fect crystal the intrinsic wavelength resolution is 

/12/2 "~ A k /k  ~_ 10 -5 . (12) 

For  a mosaic crystal, the peak width is determined by 
just those factors which operate in a double spectro- 
meter (Compton & Allison, 1935), namely, the mosaic 
width, relative orientation, and interplanar  spacings of 
the pair  of  cooperating Bragg planes which simulate 
the ' forbidden '  reflection. Depending mainly  on the 
mosaic, /12/2 might range from 10 -4 to 10 -2 . Mult iple 
Bragg reflection of neutrons in mosaic crystals has been 
studied recently by Moon  & Shull (1964). The final 
factor which affects the monochromatic i ty  for perfect 
and mosaic crystals is the vertical coll imation angle 

Aft. From equation ( l i b )  it immediately follows that  

/12/2= 1-cos/1f l~( /1f l )2/2 .  (13) 

Thus for Afl~-¼ °, A2/2~10  -5. Equation (13) shows 
that the fractional resolution of a coll imator is a con- 
stant independent of  the Bragg angle. 

The reproducibil i ty of  this well-defined wavelength 
is equally good since an operating point is determined 
by the constant angular relationships and lattice spa- 
cings inside the crystal and is located at an extremum 
with respect to external orientation. Thus only modest  
control of  the crystal temperature and orientation is 
required to attain extremely good reproducibility. 

For  a perfect crystal the intrinsic divergence AO in the 
horizontal plane is given by 

AO ~_ Ak/k  ~_ 10 -s r a d i a n _  2" (14) 

and is independent  of  any practical external collima- 
tion. The vertical divergence Aft is determined by colli- 
mation,  according to experimental needs for resolu- 
tion and intensity. Thus the beam may be described as 
semiparallel.  
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An interesting time-of-flight characteristic may be 
noted from equation (1 la), which shows that the hori- 
zontal component of momentum is constant (kinema- 
tic theory). Thus for neutrons, the horizontal compo- 
nent of velocity and the time-of-flight between vertical 
planes is independent of the degree of collimation. 
Unlike the wavelength and energy, which are merely sta- 
tionary at the operating point, the time of flight is con- 
stant. Of course, this remark does not apply to X-rays. 

Only rough estimates of beam intensities are pos- 
sible without experiments or calculations employing the 
dynamical theory. However, it is reasonable to assume 
that crystal orientations and shapes will be found which 
give a reflection efficiency of about 50yo for narrow 
wavelength and orientation band s given by equations (12) 
and (14). In that case the intensity is about l0 s times 
smaller than for an ordinary single reflection from a 
mosaic crystal having A2/2= 10 -2. Of course, if a mo- 
saic crystal with A2/2= 10 -3 were used for multiple- 
reflection monochromatization, the intensity would be 
about 103 times higher than for a perfect crystal. As 
usual, intensity and resolution requirements must be 
balanced against each other. 

Since the multiple-reflection process is essentially 
self-collimating, it is not necessary to use pinholes or 
narrow slits to obtain a high degree of monochromati- 
city. Thus the cross-sectional area of a beam is limited 
primarily by the size of the monochromator, and areas 
of l0 cm 2 are feasible. 

8. Various problems 

There are a number of experimental and theoretical 
problems which remain to be dealt with in the study 
and use of high-resolution monochromatization. A 
major experimental problem is the removal of unde- 
sired components from the reflected beam. First, there 
are the various orders, both higher and lower, which 
are often present, as pointed out in § 4. They are likely 
to be extremely intense, but fortunately their wave- 
lengths are usually quite different from the desired 
wavelength. Thus they can be removed or reduced by a 
variety of methods: control of the source spectrum, 
velocity selectors, horizontal collimation, and filters 
based on absorption, diffraction, or scattering. In ad- 
dition, there is a general background of inelastic and 
incoherent scattered radiation of all wavelengths, which 
may be controlled by the same methods and also by 
the choice of the monochromator crystal itself. An- 
other experimental problem in work of the highest pre- 
cision would be radiation damage produced by fast 
neutrons in the monochromator. 

In connection with the 'forbidden' reflections them- 
selves, there are experimental and theoretical questions. 
As discussed in § 5, it is probable that some of the re- 
flections in cubic crystals which are 'forbidden' only 
by special positions may still be useful for high-resolu- 
tion monochromatization of neutrons. These must be 
investigated individually. In addition, however, there 

may even be difficulty with some reflections strictly 
forbidden by symmetry. For example, puzzling ap- 
pearances of the 0001 reflection in three beryllium cry- 
stals have been reported for neutrons (Hay, Pattenden 
& Egelstaff, 1958). Thus it is necessary to confirm that 
the structure factors of potentially useful 'forbidden' 
reflections are in fact negligibly small. 

Experimental measurements and calculations based 
on the dynamical theory of diffraction (James, 1963) 
are required to find the crystal orientations and shapes 
which are optimum for intensity and resolution, and to 
determine the deviations from the approximate kine- 
matic theory. In passing, it should be noted that, in 
treating a diamond-structure crystal by means of dy- 
namical theory, the multiple reflections having even 
indices must be considered explicitly; it is only in the 
kinematic theory that they may be ignored. 

9. Potential uses 

Since high resolution is obtained at high cost in inten- 
sity, many experiments, particularly those involving 
inelastic processes, are not feasible in the immediate 
future by means of the monochromatization method 
proposed here. However, experiments involving elastic 
scattering, particularly crystal diffraction and total re- 
flection, are probably feasible at the present time. 
Some of these are mentioned below. 

An obvious benefit of improved angular and wave- 
length resolution is increased precision in the deter- 
mination of lattice and structure parameters, both chem- 
ical and magnetic. High-resolution beams of large 
cross-sectional area would also be useful in studying 
large scale imperfections in single crystals, e.g. lineage 
structures. Certainly the high degree of monochroma- 
ticity and reproducibility at fixed wavelengths can lead 
to highly precise standards of wavelength and energy 
for slow neutrons. The wavelengths at multiple-reflec- 
tion operating points could thus become analogous to 
those of the characteristic X-rays. Finally, the unique 
energy, wavelength, and geometric properties of such 
beams might permit more precise determinations of 
parameters of the neutron itself, e.g. coherent scat- 
tering lengths. 

The author wishes to acknowledge indebtedness to 
R. B. Smith for stimulating discussions and help in 
preliminary calculations. 

References 

BACON, G. E. (1962). Neutron Diffraction, 2nd ed., p.55. 
Oxford: Clarendon Press. 

COLE, H., CHAMBERS, F. W. & DUNN, H. M. (1962). Aeta 
Cryst. 15, 138. 

COMPTON, A. H. & ALLISON, S. K. (1935). X-rays in Theory 
and Experiment, 2nd ed., p.709. New York: Van No- 
strand. 

HAY, H. J. (1959) Report R-2982. Atomic Energy Research 
Establishment, Harwell, Berkshire, England. 



126 H I G H - R E S O L U T I O N  M O N O C H R O M A T I Z A T I O N  OF N E U T R O N S  AND X-RAYS 

HAY, H. J., PATI'ENDEN, N. J. & EGELSTAFF, P. A. (1958). 
Acta Cryst. 11, 228. 

HENDRtE, J. M. (1965). Proc. 3rd Intern. Conf. Peaceful 
Uses of Atomic Energy, 7, 372. New York: United 
Nations. 

International Tables for X-ray Crystallography (1952). 
Vol. I. Birmingham: Kynoch Press. 

JAMES, R. W. (1963). Solid State Physics, 15, 53. 
LAFOURCADE, L., COUDERC, J.-J. & LARROQUE, P. (1965). 

C.r. Acad. Sci. Paris, 260, 5752. 
MOON, R. M. & SNELL, C. G. (1964). Acta Cryst. 17, 805. 

RENNINGER, M. (1937). Z. Phys. 106, 141. 
RENNINGER, M. (1960). Z. Kristallogr. 113, 99. 
SPENCER, R. R. ,~ SMITH, J. R. (1960). Nuclear Sci. & Eng. 

8, 393. 
SWARTOUT, J. A., BOCH, A. L., COLE, T. E., CHEVERTON, 

R. D., ADAMSON, G. M. & WINTERS, C. E. (1965). Proc. 
3rd Intern. Conf. Peaceful Uses of Atomic Energy, 7, 360. 
New York: United Nations. 

TERMtNASOV, YU. S. & Tuzov, L. V. (1964). Usp. Phys. 
Nauk, 83, 223. For an English translation, see Soviet 
Phys. Usp. 7, 434 (1964). 

Acta Cryst. (1968). A24, 126 

l~tude Th6orique de la Propagation des Rayons X dans un Cristal Parfait 
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Takagi's theory is used to calculate the propagation of X-rays in perfect and nearly perfect crystals. 
In the general case, the equations have to be solved on a computer. The principle of the calculation 
is given. It has been applied to the case where an incident plane wave is collimated by a slit. The separa- 
tion of wave-fields is observed, each presenting a fine structure shown to be due to the diffraction by 
the slit. The same calculation is extended to a crystal submitted to a thermal gradient.The propagation 
and the intensities of wave-fields are in good agreement with the predictions of Penning and Polder. 

Introduction 

Nous nous sommes propos6 d'6tudier la propagation 
des rayons X dans un cristal d6form6. Plusieurs th6o- 
ties ont 6t6 d6j~t d6velopp6es dans ce but, en particulier 
celles de Penning & Polder (1961) et de Kato (1963a, b, 
1964). Ces th6ories permettent de calculer le trajet des 
rayons dans un cristal 16g6rement d6form6. Celle de 
Penning & Polder est plus commode pour calculer les 
trajets, ceUe de Kato repose sur des bases math6mati- 
ques plus pr6cises et permet le calcul des phases. Elle 
se prate ais6ment h l'6tude des franges de solution 
pendulaire dans les cristaux d6form6s (Kato & Ando, 
1966; Hart, 1966). Ces th6ories, tr6s agr6ables car elles 
n'exigent pas l'utilisation d'ordinateur puissant, ont 
certaines limitations. Par suite de leurs hypoth6ses de 
d6part, eUes ne sont plus valables lorsque la d6forrna- 
tion est tr6s grande, par exemple au voisinage d'une 
ligne de dislocation. D'autre part, si l 'on veut suivre 
effectivement le trajet d 'un rayon, il faut l'isoler par 
une fente. Par suite de la nature ondulatoire des rayon- 
nements, on ne peut isoler un rayon mais un pinceau 
qui, par suite des ph6nom6nes de diffraction, acquerra 
une structure fine. Les th6ories mentionn6es plus haut 
ne sont pas arm6es pour cela. 

Or, pour &udier exp6rimentalement le trajet de 
l'6nergie et l'intensit6 de chaque champ d'ondes pour 
un 6cart ~t l'incidence de Bragg donn6, il faut utiliser 
la double r&raction des rayons X: une onde plane 
incidente sur un cristal excite h l'int6rieur deux champs 
d'ondes pour une direction de polarisation donn6e. Cet 
effet a 6t6 pr6vu par Borrmann (1955) et mis en 6vidence 
par Authier (1960, 1961). Pour pouvoir observer la 
s6paration des trajets des champs d'ondes, on place 
une fente dont la largeur optimale est de l 'ordre de 
50/an sur le trajet d'une onde plane. Les pinceaux con- 
stitu6s par ces deux champs d'ondes ont une structure 
fine due h la diffraction par les bords de la fente. Elle 
a 6t6 observ6e et interpr6t6e par Authier & Malgrange 
(1965). Nous l'avons analys6e ici en d6tail. 

Lorsque l'onde incidente sur un cristal est une onde 
quelconque, par exemple une onde sph6rique, ou une 
onde plane limit6e par une fente, la th6orie fonda- 
mentale de Laue n'est plus directement applicable, pas 
plus que les th6ories cit6es plus haut. Une g6n6ralisa- 
tion de la th6orie dynamique au cas d'une onde sph6ri- 
que a 6t6 donn6e par Kato (1961 a, b). Une autre th6orie, 
applicable h toute forme d'onde incidente et au cas 
d'un cristal d6form6 a 6t6 donn6e par Takagi (1962). 
C'est cette th6orie que nous avons utilis6e pour &udier 


